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Abstract—The process of designing a truss of given geometry and material properties. where the
design variables are the cross-sectional areas of the bars is hampered by the need to reanalyse the
structure many times until an acceptable design is obtained. Currently, approximate explicit analysis
models. based on truncated linear Taylor series expansions. are used to evaluate the structural
response at the various candidate design peints. Due to the approximate nature of the analysis
model, the structure is designed iteratively until convergence of both the analysis equations and the
design process.

This paper presents for the first time the exact analytic expressions of the internal loads in a
truss which is subjected to static loads. The stress resultants are the ratio of two multilinear
polynomials in the element stiffness. The number of terms of the polynomials is equal to the number
of combhinations of statically determinate stable structures which can be derived from the original
structures. The cocflicients of the polynomial expansions can be obtained from equilibrium con-
“siderations and from enforcing “global” compatibility of deformations. The expressions are explicit
in both the external loads and the element stitTness.

The applicability of the analytic equations hinges on the number of combinations of statically
determinate stable substructures. In the case of small size structures, the present explicit cquations
circumvent the need for approximate reanalysis. In common engineering structures, the number of
stable subsets is prohibitively large, which renders the analytic expressions intractable. The exact
anatlytic expressions may, however, constitute a starting point for constructing approximate explicit
analysis equations of improved quality.

I. INTRODUCTION

Consider 2 hincar elastic truss of given geometry consisting of M members and N nodal
degrees of freedom (M 2= N), which is subjected to an N-vector of static loads p applied at
the nodes of the structure. Let s and ¢ be respectively the A-vectors of element axial
stiffnesses (s, = £ A,;/L,)) and element internal loads, where E,, A, and L, are respectively
Young's modulus, the cross-sectional area and the length of element j. The governing
equations for analyzing the structure are:

(1) Statics: Qi=p (1a)
(2) Constitutive law: Se =1 (Ib)
(3) Kinematics : Ru=e, (lc)

where Q is the (N x M) Statics matrix, S'is the (M x M) diagonal stiffness matrix S, =9d,s,
where 9, is the Kronecker delta), e is the M-vector of element total elongations, R is the
(M x N) Kinematics matrix and u is the N-vector of nodal displacements. Clebsch's theorem
(Asplund. 1966) cstublishes the duality between the statics and kinematics equations
through Q" = R.

Equations (1) are traditionally solved by either the Flexibility method or the Stiffness
method. In the sequel we will concentrate on the Flexibility method in which the element
loads are the principal unknowns. If the structure is statically determinate (M = N), the
element loads can be obtained directly from the statics equations, provided that the Statics
matrix is non-singular. If the structure is statically redundant (M > N) the N statics
cquations are augmented with R(=M — N) compatibility equations which are obtained
from the kinematics equations [see, for instance, Fuchs (1981)]
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¢ =R R, l("m (2)

where subscripts 0 and 1 refer to a subset of statically determinate and redundant elements
respectively. Substituting eqns (1ay and (1b) in (2} and eliminating the loads 1, of the basic
structure. yields the so-called equations of consistent deformations. These are R equations
in the redundant forces ¢, and are usually obtained from structural considerations by
performing cuts at one end of every redundant bar and by requiring compatibility of
displacements on both sides of the cut section. The equations of consistent deformations
can be written as follows

(~!;+<1’=0. {3}
with
Songne 1
C1/= Z ----- +()”~— L] = l.....R, (4)
k=1 Sk 5
ko
and
Ry Myt
d=Y =X i=1....R (5)
k=1 Sk

where the summations are carried out for the bars of the statically determinate substructure.
In these equations, i, is the load in bar & due to a pair of unit and opposite forces applicd
at both sides of the cut section in bar s, and 1 is the load in bar & duc to the applied external
forces, Note, the entries of the compatibility matrix Cand of the relative displacement vector
d depend on s the stiffnesses of the structure, The above cquations yicld the forees in
the redundant bars. The forees in the determinate basic structure are obtained from the
equiltbrium eqn (1a)

oty = p -1, ()

Consider the task of designing a statically redundant truss of given topology und nodal
coordinates. That is, we seek to determine the stiffness of the clements (usually only the
cross-sections are variables) in order for the structure to carry safely and ecconomically a
sct of apphied loads. In the absence of u theory (and equations) of design the only availuble
approach is by trial and error. Based on former experience and engineering judgement, an
initial set of stiffnesses i1s assumed and an analysis of the structure is performed. This
involves the computation ol the elements of matrix C and vector o followed by the solution
of eqns (3) und (6). Usually the results will show that the structure is either overstressed
and too flexible (not safe} or understressed and too stifl (not cconomical). In a subsequent
ileration the stiffnesses will be modified in order to obtain improved results, and a reanalysis
of the structure is performed. This procedure is repeated until a satisfactory design is
obtained. Every reanalysis requires the re-computation of C and « and the solution of
eqns (3).

The question of multiple reanalysis has been a subject of concern for generations of
structural engineers and many ingeneous techniques have been proposed over the years.
The problem has become even more acute since computerized methods for structural design
have emerged [see for instance Kirsch (1981)] in which the structural design problem is
solved via mathematical programming methods. These techniques are in fact trial and error
methods embedded in an efficient algorithmic logic. Traditionally if one would perform
only a few structural reanalyses, with mathematical programming methods the number of
required structural reanalyses have increased by orders of many magnitude.

From the onset of computerized design it was clear that without explicit analysis
equations, that is, an explicit expression of the forces in the bars (or the nodal displacements)
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as a function of the design variables (the cross-sections) the mathematical programming
approach would run out of steam. The El Dorado of the structural designer became in
some sense the explicit inverse of the compatibility matrix C or of the stiffness matrix if the
displacement method was employed. The exact explicit analysis equations were never found
and research was channeled towards devizing approximate explicit analysis expressions.
Reviews of work in the field of approximate reanalysis were published by Arora (1976) and
more recently by Abu Kassim and Topping (1985). Since the resuits of the analysis model
are approximate. the structure is now optimized iteratively, where at the end of each
minimization cycle the approximate analysis model is updated and a new minimization
process is performed.

This paper presents for the first time the exact analytic expression of the forces in the
bars of a redundant truss as a function of the stiffnesses of the elements. The force in a bar
of a truss is the ratio of two multilinear polynomials of order N in the stiffnesses of the
structure. The number of terms in each polynomial is equal to the number of statically
determinate stable substructures which can be derived from the structure. The coefficients
of the polynomials in the numerator can be obtained through equilibrium considerations.
The coeflicients of the polynomial in the denominator, which is common to all forces, can
be computed by enforcing compatibility.

As mentioned, the number of terms in the N-polynomials is equal to the number of
statically determinate stable substructures which can be obtained from the original truss.
Unfortunately, for common engineering structures, the set of stable substructures is pro-
hibitively large. The analytic expressions in their present formulation are therefore appli-
cable only to relatively small sized structures. For the automated design of more complex
structures one must still resort to some form of approximation,

20 THE GENERAL ANALYTIC EXPRESSION OF THE INTERNAL FORCES

Let us assume that the degree of statical redundancey of the structure is R and let us
solve the compatibility egns (3) by Cramer’s rule (Ayers, 1962). The force in a redundant
bar j is the ratio of the determinants of matrices C, and C

1 = G ¥
e

where €, is the matrix obtained from C by replacing its jth column with vector —d. The
purpose of this section is to establish that both determinants in eqn (7) are multilinear
polynomials of degree N in the stiffnesses of the structure. A typical term in the expansion
of the determinants will be shown to be equal to a constant multiplying the product of N
stiffnesses. Having no inclination to prefer one set of N stiffnesses over a different set, all
possible combinations of V stiffnesses out of the pool of M stiffnesses will be included in
the expansion. Subsequent sections will describe a method to compute the constants of the
polynomials.

We will start with the determinant of C. By definition. a determinant is equal to the
sum of all the combinations of signed products, each term of which containing one and
only one clement from any row and onc and only one element of any column of the matrix.
Matrix C being of the order R, a typical term in the expansion of the determinant is
therefore

+ G, CComs - - - (R clements), {8)

where C,. C; and C,,,,, are entries in matrix C such that row indices {(column indices) are
never repeated in any given term. For example, C; and C,, cannot both appear in one term
since we would have two elements of row 7 in this term, which is in violation of the definition
of the determinant.
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Note. every element of matrix C (4) is itself a polynomial in I:s,. since the member
forces due to unit loads. n, and n,, do not depend on the stiffnesses. If we use subscripts
a. b, c.... for bars in the basic structure and subscripts i, j. k.. .. for redundant bars, eqn
{8) can be further detailed as

n.n LAY NS n.n,. n..n npnt Ny,
+ (_iﬂ SRk )(J_u o T TR
su ‘Sf‘ le ‘Yh ‘Yc /

l nnmnmu nm!r"mh nnn nln('
x + e e e e (Reelements). ()

S S RO S,

¢

Please bear in mind that what we have here is one typical term of the expansion of the
determinant. Carrying out the multiplications in expression (9) we obtain terms of the form

nan b
e e (lOd)

S oo

m sl
B N (i0b)

R 7% S

and so on. Note, we always have a constant in the numerators and a product of R stiffnesses
in denominators, When we now muster all the terms of the type given in eqns (10) resulting
from the expansion of determinant |Cl we obtain an almost hopeless series of the form

[l =3 B/, (tH
&

where the B,s are constants and the g s are products of the form

NI

o= a0t NS L (12
’k o ¢ 192

where the exponents (p, g, r...) of the basic bars are positive or zero integers and the
exponents (u, r...) of the redundant elements are equal to zero or one. The products g,
are of the order R in the stiffnesses.

The determinant of €, has a similar expansion

ICA =ZA)£:/!1A~ (13}
k

where the 4,s are coefficients which are independent of the stiffnesses.

The complexity of these results can be drastically reduced by noting that g, must be
linear in every stitthess which appears in the product. In other words, the exponents of the
stiffnesses in eqn (12) are cither one or zero. Consequently every product g, will contain R
distinct stiffnesses. Terms of the form (104) for instance, where s, in the denominator is
non-lincar, will not be part of the expansion of the determinant. To show this we will
use the standard technique of the method of compatible displacements, considering one
redundant member force only. Let us disconnect an arbitrary bar 7 of the original redundant
structure, and let us apply at both ends of the cut section in equal and opposite tashion the
released redundant foree ,. The compatibility equation for the relative displacements at the
cut section is

o+ d, =0, (14

with
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M 2 l

= Y Xy (15)
k=1 2% Si
ki
u .

4=y Tk (16)
k=1 Sk

where n, is the force in bar k due to a pair of unit and opposite loads applied at the cut
section and ¢, is the force in bar k due to a pair of unit and opposite loads applied at the
cut section and ¢ is the force in bar k due to the external loads. Note, the *“‘released”
structure may still be statically indeterminate, and therefore the n,s and the s are usually
a function of the stiffnesses of the structure. However, they do not depend on the stifiness
s, of the cut element. By keeping the stiffnesses of all the bars except bar i constant, we
obtain the following expression for the load in bar ¢

¢

= b 17
Y= (17)

where ¢, and d, are independent of 5,. Now, the force in an arbitrary bar j is the superposition
of 1; due to the external forces and the load due to a pair of equal and opposite forces ¢
applied at both ends of the cut section

i =ti+n;t, (18)
which in conjunction with eqn (17) yiclds

_ (e +d )+ /s,
b= di+ /s, (19

with 1, denoting the expression for the force in member j when member / alone is allowed
to vary. All the coefficients of this equation are independent of s;. The numerator and the
denominator of eqn (19) will be recognized as the expansions of the determinants in egn
(7) when all the stiffnesses but s, are kept constant. Since this result holds for any bar i, the
stiffnesses in the expression of g (11) can only be equal to one or zero (when they are
cxcluded from the particular u,). Consequently every term in the expression of y, is now
the linear product of R stiffnesses.

Introducing eqns (11) and (13} in eqn (7) and multiplying the numerator and denomi-
nator by the product of the stiffnesses of all the M bars of the structure we obtain the
general expression for the load in an arbitrary bar j:

Z A,'k T
k

t=c—, k=1,...,C¥, 20
i ZBk“k hi ( )
k

where the number of terms in each series is equal to the number of different combinations
CY of a subset of ¥ bars which can be selected out of a total of M bars

= NR @

and every 7, is the product of the stiffnesses of the N bars in that subset
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T =55,...5, (N terms). 20

The constants 4, and B, in eqn (20) can be determined from considerations of
equilibrium and compatibility as will be demonstrated in the following sections.

3. USING EQUILIBRIUM TO DETERMINE THE 4, CONSTANTS

To determine the 4, constants, let us extract from the general eqn (20) the expression
for the load ¢, in bar j for the statically determinate subset m. To do so, we set to zero all
the bars which do not appear in the subset m. Since all the n.s except n,, reduce to zero,
eqn (20) gives

. AT 2

e B_,ﬂ,,, + (*"*)
and therefore

A, =1,B,. (24)

As expected the stiffnesses cancel out from eqn (23) since the forces in a statically deter-
minate structure are independent of the rigidities. An additional result which can be drawn
from eqn (23) is that combinations of N bars which are not stable must not appear in the
summations of eyn (20). If they appear, eqn (23) would be able to predict the forces in a
non-stible structure, which is inconceivable. We have thus reduced the general expression
of the force in a bar of a truss to the structured expression

Z .8* !,km
k

f o=
! Z Bk (7
&

(25)

where the summations are now carried out over all the statically determinate stable sub-
structures which can be obtained from the redundant truss.

One could arguc that unstable structures {with & bars) which can carry a particutar
loading condition should be present in eqn (25) for the case of that loading condition.
However, kinematically unstable combinations are not structures, in the pure sense of the
word, and are therefore not part of eqn (25). Consequently, eqn (25) will be singular for a
conditionally stable structure.

To visualize the results obtained so far let us apply the theory to the three-bar truss of
Fig. 1. This structure has been studied extensively by investigators in the field of structural
design. It is composed of three bars with two nodal degrees of freedom, and it therefore
has a statical redundancy of R = 1. Young's modulus for all the bars is £. The design
variables of the structure are the stiffnesses of the three bars, s,, 5, and 5. By inspection
we find that the truss has three statically determinate stable substructures composed of

wugen
o 6|
45° as°

Py
.

Fig. 1. The three-bar truss problem,
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Table |
Substructure Internal loads in bars [t,] B,
Missing bar [k] | 2 3
1 * (p1+p2) -l/ipl 1
2 V22pi+p)  * 22(pi-p0) 2
3 NGT2 ¢:-p)  * 1

members (2. 3). (1. 3) and (l.2) respectively. In the following. index k will denote the
substructure from which bar & is missing. Using eqn (25) we can immediately write the
expression of the member loads of the three-bar truss

i
4, ='A‘(BI’I15:53+Bz’|:5153+831|35|52)
1
= Z(Bulzlszs,\+321225153+B.11235152)
1
ty = 5(Bltllsls}+82’325I51+BJ1315152) (26)
with
A = [315:‘\‘]*“BlSp\‘_\*'BJ.‘].T: (27)

where the member forces ¢, (force in member j if the loads are applied to substructure &
only) arc given in Table 1 in the case of a general loading p,, p,. What remains to be
computed are the three B, constants. As will be shown in the next section, these constants
can be obtained from compatibility conditions.

4. USING COMPATIBILITY TO COMPUTE THE B, CONSTANTS

Up to this point we have used the statics equations (1a) and the material constitutive
faw (1b) to derive the general expression (25) of the internal forces in a truss. The equilibrium
equations are present in the £,s and the element properties (stiffnesses) appear in the m,s.
We will now show that the B, coeflicients can be obtained from the kinematics equations
(1¢). The method which will be presented may not be the only way to determine these
coeflicients and for that matter, it may not be the most efficient approach. As will be shown,
the B, coeflicients represent compatibility of deformations. Without loss of generality, the
method will be introduced for the three-bar truss.

Eliminating the displacement vector u from the kinematics equations (lc) yields the
compatibility equation which expresses the deformation of a redundant bar in terms of the
deformations of the determinate bars :

e.~\/5e2+e,=0. (28)
By dividing both sides of expression ¢, (j = 1, 2, 3) in eqns (26) by s,, and using the values
of t, given in Table |, we obtain the expression of the elongations of the bars of the structure
1 2
“o=y [%‘: (P +p2)Bysy+ \/il’l Bssz]

I
{pi+p2)Biss+(p2—p i) B;si]

€=

g

[ 2
[—ﬁp,B,s;-F-\é——(pz—p.)st,] (29)

>
]
B
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which when introduced in the compatibility equation (28). and after grouping the terms in
$1. 5y and s, vields the condition

N

B, ‘B,
;"'83 Sl+‘B]“‘BI)S:+(;‘ —‘B‘)S;;—*O. (30}

Since this is a “universal” compatibility equation. that is. it enforces compatibility for any
values of the stiffnesses. the terms in parenthesis must be identically zero. From the structure
of eqns (25) we note that one of the B;s can be given an arbitrary value. Setting B, = 1 for
instance. condition (30) yields an overdetermined but consistent set of linear equations in
the B,s with the result shown in the last column of Table 1.

It is worthwhile to emphasize that the external loading p does not appear in the
conditions for compatibility given by eqn (30). This is no coincidence. As is shown in the
Appendix. the compatibility coeflicients 8, depend only on the geometry of the structure,
which is to be expected since they derive from purely kinematic considerations. In other
words, the three conditions embedded in eqn (30) are the same for any external loading,

In the more general case, the procedure to determine the B, coeflicients is numerically
more complex but the concept remains unchanged. Consider a redundant structure con-
sisting of Af bars with ¥ nodal degrees of freedom. In every r, in eqn (25) we will have the
products of subscts of N stiffnesses out of the available M bars. The expression of the
deformations of the elements is obtained by dividing every product m, appearing in the
numerator of a force in eqn (25) by its corresponding stiffness

Y Bugms,
&

o= (3
‘ Y Bimy
13

These clongations are then introduced in compatibility equations given by eqn (2). Since
the compatibility equations are lincar and homogencous expressions in ¢, the denominator
in cqns (31) will cancel out. What we are left with are homogencous polynomials in terms
of combinations of products of (N —1) stiffnesses (combinations of n, /s,). The coctlicients
multiplying these products of stiffnesses are lincar homogencous polynomials in terms of
the B, constunts. In order to satisfy the compatibility cquations for any value of the
stitfnesses, all the B, polynomials must be identically zero. This leads to in overdetermined
sct of homogencous lincar equations in the B,s. This overdetermined set of equations is
consistent since no simplifying assumptions or approximations were made during the
dertvation of the present theory. By giving an arbitrary value to one of the constants (say
B, = 1) the remaining unknowns can be determined. As mentioned ecarlicr, the values of
the B;s are independent of the external loading.

In the next section the method to determine the analytic expression of the internal
loads in a redundant truss will be illustrated by a numerical example.

5. A NUMERICAL EXAMPLE

The ten-bar truss depicted in Fig. 2 is a classic test case of optimal structural design
(Kirsch, 1981). The truss is composed of M = 10 bars and has N = § nodal degrees of
freedom, the degree of static redundancy is thus R = 2. Young's modulus is the same for
all the bars of the structure. The structure is subjected to two vertical loads of intensity p.
applicd at the nodes of the bottom chord. The number of different combinations of 8 bars
out of a total of 10 buars is 45 (cqn  21), but only 29 of them lead to stable statically
determinate substructures. The stable substructures are shown in Fig. 3 where every com-
bination is denoted by a sequential number on the top-left of the structure. and by the pair
of missing redundant bars on the top-right of the structure (note, index 0 stands for bar
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b
)

Fig. 2. The ten-bar truss problem.

10). For example. B, corresponds to the substructures from which bars 2 and S are missing.
Table 2 gives the values of the internal forces in the ten elements for the external loads
applied directly to the 29 substructures. At this point, the loads in bars [ and 2, for instance,
are

(= 3Bysmas+3By6Ma6+ 3839+ 3Bygmag + - +2B5oms,
l Bismis+ BigMio+Biamti 1+ Biymis+ - + Byonsg

3 28,;7!,,+3\/§B|,,n‘“,+3\/§B|7ﬂ|7+3\/53|,‘7t“(+ te +\/§B50n59
Bysmys+8B4mio+ By s+ Biyms+ - ’

[2:

+
>
3
aq
3

It 15 |2 16

2

] [~
N
(5]
%
()]

K

113 35 !m 36 !15 37 e 38
| ! l o

14 39 8 30 9 45 |20 46
| | : ,

2| 47 :zz 48 :23 49 :24 40
125 56 |26 57 127 58 (28 59
i | f {

29 50

Fig. 3..The 29 stable statically determinate subsets of the ten-bar truss.
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Table 2
Substructure Internal loads in bars [¢,] 8,
Number  Missing

k) bars 1 2 3 4 s 6 7 8 9 10

12 Unstable
- 13 Unstable

14 Unstable
l 5. N T I -VE I B B
N 6 - R T L/ S -1 0 l
3 17 3 § N . J20 22
4 y W20 -4 =2 0 2 . -t 0 22
s 9 LI R S 0 -J2 I !
6 T 322 - -2 0 2 0 -1 1

23 Unstable

24 Unstable
7 3003 . NI -1 22 Jr - 1o
8 % 3 . 22 -1 s J2 0 -1 0 22
9 73 . -2/2 -1 2 I . -J2 0 8
10 ®3 y -2/ -t o V2 -1 0 8
g 293 y -2/2 -1 2 I 0 ~-J2 t 2,2
12 003 . -2/2 -1 1 o J2 0 N

R Unstable
1 s 22 -3 1 0 -J2 0 [ 22
14 IO 22 e L J2 0 -1 0 22
[s 37 [ Jjroo -3 0 ! . -J2 0 ! ]
16 AL /2 -3 -1 0 J2 -t 0 X
17 W LN -3 0 [ 0 -J2 I 2/2
s LI 22 -3 -1 0 J2 0 -1 22
19 504 ~J2 =32 e -2 37 /2 -3 -2
20 ST ~J2 =32 2 e 2 -t 0 1
21 704 VAT 5 R R B -J2 0 10
2 484 -J2 =32 2 0 2o -1 0 22
23 904 ~J2 =320 3 10 -J2 0 1
24 0 4 ~J2 =32 2 0 20 -1 1
25 s6 2 J2o-y? -2 20 -1 0 1
26 571 2/2 0 - -J2 0 1 2
27 58 2 JVIo=J2 =2 0 2o -1 0 22
28 59 1 2/2 0 -3 0+ 1 0 -2 !
29 50 2 2=V =2 v 0 20 -1 1
- 67 Unstable
- 68 Unstable

69 Unstable

60 Unstable

78 Unstable
- 79 Unstable

70 Unstable

89 Unstable

80 Unstable
- 90 Unstable
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We have chosen here to express the forces directly in terms of the cross-sectional areas
of the elements, i.e. we are writing explicit expressions in terms of 4;s rather than s;s. A
typical n,, represents the product of all the cross-sections of the bars except bars [ and m.
For example, 7, stands for the product A, 4,4 A¢A;43494, (note, A; and 4 are
missing). To determine the B, coefficients one writes two compatibility equations. such as

e“’\/iez—\/iejqf'e"*'es =0 (333)
e5+e6—ﬁe7—ﬁes+e9+e.o = 0. (33b)

The element elongations are obtained by dividing each force by its stiffness. The
numerators of the elongations in bars | and 2, for instance, are

e, = 3Bysm 35+ 3By 26+ 3By 27+ 3By a5+ 0 +2BsoT 50
e; =685 15+ 6B 47 26+6B1M127+6B 57,25+ - +2BsoMis0, (34)

where n,,, represents the product of all the cross-sections of the structure except bars /. m
and 2. Introducing the bar elongations into eqns (33) and grouping by the =,,, products,
yields two equations from which the B, coefficients will be determined. The first com-
patibility equation (33a) for instance becomes

(3B35—6/2B, )7 125+ (3Brs—63/2B )R 26+ - = 0. (35)

Since this relation must be satisfied for any values of the n,,,, products we obtain conditions
of the form

825—2 28:5 =0
By—2/2B,s = 0. (36)

This leads to an overdetermined but consistent set of homogeneous linear equations in the
29 B, cocflicients, out of which only 28 equations are independent equations. For instance,
setting B, = | onc obtains the other 28 coefficients by simple back-substitution. The result
is given in the last column of Table 2.

6. CONCLUSIONS

This paper has presented the analytic expression of the internal forces in a linear elustic
truss, subjected to static loads, as an explicit function of the stiffnesses of the bars, The
three basic ingredients of structural analysis, that is, equilibrium, constitutive law and
compatibility of deformations appear in the equations in a highly structured manner.
Instead of assembling the stiffness matrix, as is done in the matrix displacement method,
and solving the equilibrium equations, we now have a technique to assemble directly the
solution. The explicit analysis equations were developed for trusses. However, Fuchs (1991)
has shown that the analysis of any framed structure, including bending elements, can be
cast in the form of a truss [eqns (1)] by the uncoupling of the bending deformation into a
pure moment mode and a “pure” shear mode. This leads to a diagonal stiffness matrix S
which is what characterizes the truss. Consequently, the present method can be extended
to include structures composed of flexural elements.

This brings us to the issue of implementation. The proposed method is based on
scanning the statics matrix @ in order to determine the set of statically determinate stable
substructures and solving for the internal loads in every substructure. For this purpose we
have at our disposal well established numerical techniques which are used in the revised
simplex method of linear programming (Strang, 1986). To determine the compatibility
constants B, one needs to write the set of relations in the B,s, which leads to the solution
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of a system of linear equations whose rank is now known. The algorithms for applying the
method should pose no problem. The only questionable aspect is the number of terms
involved in the explicit expression. In many cases they will render the explicit solution
intractable.

The main contribution of this paper is the presentation of the analytic solution of the
structural analysis equations. For small size structures it constitutes an efficient solution for
structural reanalysis. For large engineering structures one must still consider approximate
analysis models. However. a perusal of the analytic expressions, may help in deriving
improved approximations which will be based on structural considerations, in contrast to
the prevailing approach. which is mathematical in essence.
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APPENDIX: THE B8, COEFFICIENTS DEPENDENT ONLY ON THE GEOMETRY OF THE
STRUCTURE

Tr Section 4 of this paper, the method for obtaining the hinear equations in the #, compatibility coctlicients
wits performed analytically for the three-bar truss problent. In the case of the three-bur truss the external foading
{(p. 7)) vanished from the compatibility cquations (30). We will show here that this is a generad result,

Constder a compatihility condition resulting from the product ., in the ten-bar truss {see eqn 35). The
compatibility coctlicients appearing in that condition originate from the terms in 8, 8, and B,, in the expression
of the bar clongations ¢, ¢, and e, respectively. Consequently the compatibility condition takes the form

Uiy Bhu’n_hn A+ Hnm’/,,m. + iy Bty = 4, (AlY

where the a,, are constants depending on geometry only, and ¢, ., is typically the Torce in bar n for the subset [m.
The forces in the above cquation are related to the external loading through

¢
Do 5 W)

Lot = M, (A2

where #,,,,, is typically the vector of the elements of row 7 in the inverse of the statics matrix Q,,, of subset (ma).
Note, the matrices ,, and (,, are obtained from matrix ¢, by removing column / and replacing it by columns
n and m respectively (the column indives refer to their position in the statics matrix Q). Using the product form
of the inverse (Strang, 1985) one can show that

Ftm = Ty poni U

(A}

o = hi‘umjvhvr-
where the scalars ¢, and r,, are the Ah entry of the vector ¢ in the system of equations (Ada) and (Adb)
respectively

Gl = 4, (Ada)
(O (Adb)
Since the three & vectors in cqn (A2) are parallel vectors their scalur products with p will cancel out from the

homogencous equations (A1), Conscquently. the 8, cocfficients are independent from the external loading. They
reflect only the conditions for compatible deformations for any combination of stiffnesses of the bars of the

structurc.



