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Abstracl-The process of designing a truss of given geometry and material properties. where the
design variables are the cross-sectional areas of the bars is hampered by the need to reanalyse the
structure many times until an acceptable design is obtained. Currently. approllimate e)(plicit analysis
models. b,lsed on truncated linear Taylor series ellp'lnsions. are used to evaluate the structural
response at the various candidate design points. Due to the appro)(imate nature of the analysis
model. the structure is designed iteratively until convergence of both the analysis equations and the
design process.

This paper presents for the first time the e)(act analytic ellpressions of the internal loads in a
truss which is subj~-.:ted to static I'lads. The stress resultants arc the ratio of two multilinear
p"lynomials in the element stiffness. The number of terms of the polynomials is equal to the number
of comhinations of statically determinate stahle structures which can be derivcd from the origin,ll
structures. The coefTicients of the polynomial clIpansions can be obtained from equilibrium con­
siderations and from enforcing "g!"hal" compalibility of deformations. The ellpressi,ms arc e)(plicit
in hoth thc e)(lernall,'ads ,\lid the dement stiffness.

The applicahility of the analytic cqualions hinges on the number of comhinations of statically
determinate slahle suhstructures. In the case of small sile structures. the present e)(plicit equations
circumvent the need for approllimate reanalysis. In common engineering structures. the number of
slahle subselS is prohibitively large. which renders the analytic cllprcs.sions intractable. The ellact
analytic e)(pressions may. however. constitute a starting point for constructing appnaimate ellplicit
,malysis equations of improved quality.

I. INTRODUCTiON

Consider a linear clastic truss of given geometry consisting of I~f members and N nodal
degrees of freedom (M ~ N). which is subjected to an N-vector of static loads p applied at
the nodes of the structure. Let sand t be respectively the AI-vectors of element axial
stilfnesses (.f, = £,AdL,) and element internal loads. where £1' AI and LJ arc respectively
Young's modulus. the cross-sectional area and the length of element j. The governing
equations for analyzing the structure are:

(I) Statics: Qt =p (la)

(2) Constitutive law: Se = t (Ib)

(3) Kinematics: RII = e. (I c)

where Q is the (N x AI) Statics matrix. S is the (AI x M) diagonal stiffness matrix (S,) = J'jSj'

where J'I is the Kronecker delta). e is the M-vector of element total elongations, R is the
(M x N) Kinematics matrix and II is the N-vector of nodal displacements. Clebsch's theorem
(Asplund. 1966) establishes the duality between the statics and kinematics equations
through Qf = R.

Equations (I) are traditionally solved by either the Flexibility method or the Stiffness
method. In the sequel we will concentrate on the Flexibility method in which the clement
loads are the principal unknowns. If the structure is statically determinate (M = N), the
element loads can be obtained directly from the statics equations. provided that the Statics
matrix is non-singular. If the structure is statically redundant (M > N) the N statics
equations are augmented with R( = M - N) compatibility equations which are obtained
from the kinematics equations [see. for instance. Fuchs (1981)]
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(2)

where subscripts 0 and I refer to a subset of staticalh determinate and redundant elements
respectively. Substituting eqns (Ia) and (I bl in (2) a~d eliminating the loads t" of the basic
structure. yields the so-called equations of consistent deformations. These are R equations
in the redundant forces t I and are usually obtained from structural considerations bv
performing cuts at one end of every redundant bar and by requiring compatibility ;1'
displacements on both sides of the cut section. The equations of consistent deformations
can be written as follows

with

(4)

and

(5)

where the summations arc carried out for the bars of the statil:ally determinate suhstrw;turc.
In these equations. "",,, is the load in bar k due to a pair of unit and opposite fon:cs applied
at both sides of the cut section in bar lit. and t" is the load in bar k due to the applied external
forces. Note. the entries of the compatibility matrix C amI of the rdative displacement vector
d depend on s the still'nesses of the strw;tllre. The above equations yield the forces in
the redundant bars. The fon:es in the determinate hasic structure arc ohtained from the
equilihrium eqn (Ia)

Consider the task of designing a statically redundant truss of given topology and nodal
coordinates. That is. we seek to determine the still'ness of the dements (usually only the
cross-sections arc variables) in order for the structure to carry safely and economically a
set of applied loads. In the absence of a theory (and equations) of design the only available
approach is by trial and error. Based on former experience and engineering judgement. an
initial set of stilrnesses is assumed and an analysis of the structure is performed. This
involves the computation of the elements of matrix C and vector d followed by the solution
of eqns (3) and (6). Usually the results \vill show that the structure is either overstressed
and too flexible (not safe) or understressed and too still' (not economical). In a subsequent
iteration the stilTnesses will be modilled in order to obtain improved results. and a reanalysis
of the structure is performed. This procedure is repeated until a satisfactory design is
obtained. Every reanalysis requires the re-computation of C and d and the solution of
eqns (3).

The question of multiple reanalysis has been a subject of concern for generations of
structural engineers and many ingeneous techniques have been proposed over the years.
The problem has become even more acute since computerized methods for structural design
have emerged [see for instance Kirsch (1981)] in which the structural design problem is
solved via mathematical programming methods. These techniques are in fact trial and error
methods embedded in an efficient algorithmic logic. Traditionally if one would perform
only a few structural reanalyses. with mathematical programming methods the number of
required structural reanalyses have increased by orders of many magnitude.

From the onset of computerized design it was clear that without explicit analysis
equations. that is. an explicit expression of the forces in the bars (or the nodal displacements)
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as a function of the design variables (the cross-sections) the mathematical programming
approach would run out of steam. The El Dorado of the structural designer became in
some sense the explicit inverse of the compatibility matrix C or of the stiffness matrix if the
displacement method was employed. The exact explicit analysis equations were never found
and research was channeled towards devizing approximate explicit analysis expressions.
Reviews of work in the field ofapproximate reanalysis were published by Arora (1976) and
more recently by Abu Kassim and Topping (1985). Since the results of the analysis model
are approximate. the structure is now optimized iteratively. where at the end of each
minimization cycle the approximate analysis model is updated and a new minimization
process is performed.

This paper presents for the first time the exact analytic expression of the forces in the
bars of a redundant truss as a function of the stiffnesses of the elements. The force in a bar
of a truss is the ratio of two multilinear polynomials of order N in the stiffnesses of the
structure. The number of terms in each polynomial is equal to the number of statically
determinate stable substructures which can be derived from the structure. The coefficients
of the polynomials in the numerator can be obtained through equilibrium considerations.
The coefficients of the polynomial in the denominator. which is common to all forces. can
be computed by enforcing compatibility.

As mentioned. the number of terms in the N-polynomiuls is equal to the number of
statically determinate stable substructures which can be obtained from the original truss.
Unfortunately. for comlllon engineering structures. the set of stable substructures is pro­
hibitively large. The ,In<llytic expressions in their present formulation are therefore appli­
cable only to relatively small sized structures. For the uutom,tted design of more complex
structures one must still resort 10 somc form of approximation.

2 TilE (iENERAI. ANAI.YTIC EXPRESSION OF TilE INTERNAL FORCES

Let us aSSUllle that the tkgree of statical redundancy of the structurc is R ,lIld let us
solve the compatihility elJns (3) by Cramer's rule (Ayers, 1962). The force in a redundant
bar j is the ratio of the tlctcnninants of matrices ('I and C

Iq
t· =--
1 IC!' (7)

where C1 is the matrix obtained from C by replacing its jth column with vector -d. The
purpose of this section is to cstablish that both determinants in eqn (7) arc multilinear
polynomials of degree N in the stitfncsscs of thc structure. A typical term in the expansion
of the determinants will be shown to be equal to a constant multiplying the product of N
stitTnesses. Having no inclination to prefer one set of N stiffnesses over a different set, all
possible combinations of N stiffncsses out of the pool of M stiffnesses will be included in
the expansion. Subsequent sections will describe a method to compute the constants of the
polynomials.

We will start with the detcrminant of C. By definition, a determinant is equal to the
sum of ull the combinations of signed products, each term of which containing one and
only one clement from any row and one and only one clement of any column of thc matrix.
Matrix C being of the order R. a typical term in the cxpansion of the detcrminant is
therefore

(8)

where C'I' Ck/ and c,,,,,, are entries in matrix C such that row indices (column indices) are
never repeated in any given term. For example, Cii and C,m cannot both appear in one term
since we would have two elements of row i in this term, which is in violation of the definition
of the determinant.
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Note. every element of matrix C (4) is itself a polynomial in 1'.1'/. since the member
forces due to unit loads. n,i< and n,k. do not depend on the stitfnesses. If we use subscripts
a. b. c.. .. for bars in the basic structure and subscripts i. j. k . ... for redundant bars. eqn
(8) can be further detailed as

(9)

Please bear in mind that what we have here is one typical term of the expansion of the
determinant. Carrying out the multiplications in expression (9) we obtain terms of the form

( lOa)

(lOb)

and so on. Note. we always have a constant in the numerators and a product of R stifrnesses
in denominators. When we now muster all the terms of the type given in eqns (10) resulting
from the expansion of determinant lei we obtain an almost hopeless series of the form

ICl L lJdl1k.
k

where the Ok s arc constan ts and the JlIo. s a re prod lIcts of the form

( I I)

( 12)

where the exponcnts (". q. r . .. ) of thc basic bars arc positive or zero integers and the
exponents (II. l' . .. ) of thc rcdundant demcnts an: equal to zero or one. The products 1'10.

arc of thc order R in the stilrncsses.
The determinant of C/ has a similar expansion

fCII = L AlklJlIo..
10.

(13 )

where the A/ks are coetlkients which arc independent of the still'nesses.
The complexity of these results can be drastically reduced by noting that 1'10. must be

linear in every stifrness which appears in the product. 1n other words. the exponents of the
stilTnesscs in egn (12) are either one or zero. Consequently every product Jlk will contain R
distinct stifl'nesses. Terms of the form (lOa) for instance. where .1'" in the denominator is
non-linear. will not be part of the expansion of the determinant. To show this we will
usc the standard technique of the method of compatible displacements. considering one
redundant member force only. Let us disconnect an arbitmry bar i of the original redundant
structure. and let us apply at both ends of the cut section in equal and opposite fashion the
released redundant force f,. The compatibility equation for the rdative displacements at the
cut section is

with

('i,f, + eI, == O. ( 14)
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Cii = L -+-

t _ I St Si
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(15)

(16)

where nit is the force in bar k due to a pair of unit and opposite loads applied at the cut
section and It is the force in bar k due to a pair of unit and opposite loads applied at the
cut section and It is the force in bar k due to the external loads. Note, the "released"
structure may still be statically indeterminate, and therefore the n/ks and the ItS are usually
a function of the stiffnesses of the structure. However, they do not depend on the stiffness
Sj of the cut element. By keeping the stiffnesses of all the bars except bar i constant, we
obtain the following expression for the load in bar i

c,
I, = ,

dj + l/si
(17)

where C; and di are independent ofSi' Now, the force in an arbitrary bar j is the superposition
of Ii due to the external forces and the load due to a pair of equal and opposite forces Ii

applied at both ends of the cut section

(18)

which in conjunction with eqn (17) yields

(19)

with I,. denoting the expression for the force in member j when member i alone is allowed
to vary. All the coefficients of this equation are independent of S,. The numerator and the
denominator of eqn (19) will be recognized as the expansions of the determinants in eqn
(7) when all the stiffnesses but s, are kept constant. Since this result holds for any bar i, the
stitfnesses in the expression of J1.t (II) can only be equal to one or zero (when they are
excluded from the particular J1.t). Consequently every term in the expression of J1.t is now
the linear product of R stitTnesses.

Introducing eqns (II) and (13) in eqn (7) and multiplying the numerator and denomi·
nator by the product of the stitTnesses of all the M bars of the structure we obtain the
general expression for the load in an arbitrary bar j:

k= I, ... ,C~, (20)

where the number of terms in each series is equal to the number of different combinations
C~ of a subset of N bars which can be selected out of a total of M bars

(21)

and every 1tk is the product of the stiffnesses of the N bars in that subset
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Jrk = 5,51 " .S", (N terms). (22)

The constants Alk and Hk in eqn (20) can be determined from considerations of
equilibrium and compatibility as will be demonstrated in the following sections.

3. USING EQUILIBRIUM TO DETERMINE THE A,. CONSTANTS

To determine the AJk constants, let us extract from the general eqn (20) the expression
for the load tjm in bar j for the statically determinate subset m. To do so, we set to zero all
the bars which do not appear in the subset m. Since all the ltkS except ltm reduce to zero,
eqn (20) gives

(23)

and therefore

(24)

As expected the stilfnesses cancel out from eqn (23) since the forces in a statically deter­
minate structure are independent of the rigidities. An additional result which can be drawn
from eqn (23) is that combinations of N bars which arc not stable must not appear in the
summations of e4n (20). If they appear, e4n (23) would be able to predict the forces in a
non-stable structure, which is inconceivable. We have thus reduced the general expression
of the force in a bar of a truss to the structured expression

L JJIc!lk Jrk
k

I, = L: JJ
k

Jrk '

k

(25)

where the summations arc now carried out over all the statically determinate stable suo­
structures which can be obtained from the redundant truss.

One could argue that unstable structures (with N bars) which can carry a particular
loading condition should be present in e4n (25) for the case of that loading condition.
However, kinematically unstable combinations are not structures, in the pure sense of the
word, and are therefore not part of eqn (25). Consequently, eqn (25) will be singular for a
conditionally stable structure.

To visualize the results obtained so far let us apply the theory to the three-bar truss of
Fig. I. This structure has been studied extensively by investigators in the field of structural
design. It is composed of three bars with two nodal degrees of freedom, and it therefore
has a statical redundancy of R = l. Young's modulus for all the bars is E. The design
variables of the structure are the stilfnesses of the three bars, SI, S2 and S). By inspection
we find that the truss has three statically determinate stable substructures composed of

Fig. I. The three-bar truss problem.
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Table I

Substructure Intemalloads in bars [11.1 B,

Missing bar [kJ 2 3

• (PI +Pl) -Jip.

~ ,,/~.':2(P' +P:) • j2/2(p,-p,) :2

3 JiP, (Pz-p,) •

5~5

members (2.3). (I. 3) and (I. 2) respectively. [n the following. index k will denote the
substructure from which bar k is missing. Using eqn (25) we can immediately write the
expression of the member loads of the three-bar truss

(26)

with

(27)

where the memher forces 11k (force in member j if the loads are applied to suhstructure k
only) arc given in Tahle I in the case of a geneml loading PI. p~. What remains to he
computed arc the three IJk constants. As will be shown in the next section. these constants
can he ohtained from compatibility conditions.

4. USING COMI'ATIIIILlTY TO COMPUTE THE B. CONSTANTS

Up to this point we have used the statics equations (Ia) and the material constitutive
law (I b) to derive the general expression (25) of the internal forces in a truss. Theequilibrium
equations are present in the l)kS and the element properties (stitfnesses) appear in the n:.s.
We will now show that the Bk coetlicients can be obtained from the kinematics equations
(I c). The method which will be presented may not be the only way to determine these
coetlicients and for that matter, it may not be the most efficient approach. As will be shown,
the B. codlicients represent compatibility of deformations. Without loss of generality, the
method will be introduced for the three-bar truss.

Eliminating the displacement vector u from the kinematics equations (Ie) yields the
compatibility equation which expresses the deformation of a redundant bar in terms of the
deformations of the determinate bars:

(28)

By dividing both sides of expression I) (j = 1,2,3) in eqns (26) by 5). and using the values
of 11k given in Table I. we obtain the expression of the elongations of the bars of the structure

£'1 = ~ [!.! (PI +P~)B25)+J2PIB)S2J
I

£'~ = Li[(PI +p~)BIS)+(P2-P'>B)5al

(29)
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which when introduced in the compatibility equation (2S). and aft..:r grouping th..: t..:rms in
Sj. Sc and .1'., yidds the condition

Since this is a "universal" compatibility equation. that is. it enforces compatibility for any
values of the stitfnesses. the terms in parenthesis must be identically zero. From the strlll.:tur..:
ofeqns (25) we note that one of the B"s can be given an arbitrary value. Setting 8 1 = I l~)r

instance. condition (30) yields an overdetermined but consistent s..:t of linear equations in
the Bks with the result shown in the last column of Tabk I.

ft is worthwhile to emphasize that the external loading p docs not appear in the
conditions for compatibility given by eqn (30). This is no coincidence. As is shown in th..:
Appendix. the compatibility coetticients Bk depend only on the geometry of the structure.
which is to be expected since they derive from purely kinematic considerations. In other
words. the three conditions embedded in eqn (30) are the same for any ext\Crnalloading.

In the more general case. the procedure to determine the B, coellicients is numerically
1:lore complex but the concept remains unchanged. Consider a redundant structure cOIl­
sisting of M nars with N nodal degrees of freedom. In every 11:, in eqn (25) we will havl.: th..:
products of subsets of N stilrnesses out of the availanle M bars. The I.:xpn:ssion \)1' the
deformations of the elements is obtaim:d by dividing every prodm:t Jr, ;lppl.:aring in thl.:
numerator of a t~mx in eqn (25) by its corresponding stitrness

c =I

L U, I j , Jr, Is,
k ell )

Thl.:se elongations arc then introduced in compatibility equations given by eqn (2). Sine..:
the compatibility equations arc linear and homogeneous expressions in c. the d..:nominator
in eqns (31) will cancel out. What we arc left with arc homogeneous polynomials in terms
of combinations of products of (N -I) stilrnesst:s (combinations of rr..!Sj)' The coellkients
multiplying these products of stilrnt:sses arc linc:tr homogeneolls polynomials in terms of
the B, constants. In order to satisfy the compatibility e4uutions l~)r any value of the
stilrnesses. all the Hk polynomials must be identil:ally zero. This leads to an overdetermined
set of homogeneous linear equations in tht: 8 k s. This overdetermined set or equations is
consistent since no simplifying assumptions or approximations were made during the
derivation of the present theory. By giving an arbitrary value to one of the constants (say
U1 = I) the remaining unknowns can be determined. As mentioned earlier. the values of
the B.s arc independent of the external loading.

In the next section the method to determine the analytic expression of the internal
loads in a redundant truss will be illustrated by a numerical example.

5. A NUMERICAL EXAMPLE

The ten-bar truss depicted in Fig. 2 is a classic test case of optimal structural design
(Kirsch. 1981). The truss is composed of AI = 10 bars :tnd has N = 8 nodal degre..:s or
freedom. the degree of static redundancy is thus R 2. Young's modulus is the sam..: for
all the bars of the structure. The structure is subjected to two verticallo:tds of intensity fl.
applied at the nodes of the bottom chord. The number of difli:n:nt combinations of 8 bars
out of a total of 10 bars is 45 (eqn 21). but only 29 of them lead to stable stati(.·ally
determinate substructures. The stable substructures are shown in Fig. J where every com­
bination is denoted by a sequential number on the top-left of the structure. and by the p:tir
of missing redundant bars on the top-right of the structure (note, inde:'\ 0 stands for bar
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Fig. ~. The ten-bar truss problem.

5~7

10). For example. B 2S corresponds to the substructures from which bars 2 and 5 are missing.
Table 2 gives the values of the internal forces in the ten elements for the external loads
applied directly to the 29 substructures. At this point. the loads in bars I and 2. for instance.
are

t
_ 3B2S1t~s+3Bz61t~6+3B271tZ7+3B~R1t~R+ '" +2Bso 1tso

1-
B ,S1t ls + B I6 1t 16 + B 17 1t 17 + B1R 1t I R + ... + Bso1tso

3J2B'S 7t 1S+3J2B I6 1t 16 + 3J2B I7 1t 17 +3J2B 1R 1t IR + ... + J2B so 1t sot, =---~'---------- .- (32)
• BIS1tIS+Blh1tlh+BI71t17+BIR1tIK+'" + Bso1t so .

Fig. 3.- The 29 stable statically determinate subsets of the ten-bar truss.
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Table 2

Substructure lnt<:rnalloads in bars [t,.J B,

"umber Missing
[kJ bars 2 4 5 6 7 8 9 10

12 Unstable

13 Unstable

14 Unstable

15 3v'~ 2 -4 2 , -2,,/2 1 2
" " -

2 16 ~ " 2 -4 2 ;:; 0 -I 0-" - " v'"
17 3,,2

.,
-4 -1 I )2 0 1

, r,
" - -v'"

4 I~ 3" '2 , -4 2 0
c- , /," -I 0

~

v- "vI .... -v -

5 19 3v '2 , -4 -I 1 0 -fi Iv-

b 10 3,,/2 l; -4 2 0 /" 0 -I" - v-
23 Unstable

24 Unstable

7 25 3 , /2 -I -I 2./Z J1 -2 -I , /..;,
-" '",,' -

~ 26 3 , 'z -I ;;; 0 -I 0
, ,'.,

-" v'" -v -
9 27 -zfi -I 2 I -JZ 0 1 8

10 ~x 3 -Z)Z -I 0 )2 -I () 8

II 29 3 ' r~ -I 2 I -J2 1 , t--

0
.,- .. ,,1- -y -

12 20 .1 -2jZ -I 0 fi () -I 2,\,/2

,14 llnslahle

1.1 .1S I 'l /., -.1 0 -)Z 0
, i/"_,,/ - -v -

1.1 ~(, I
, h -.1 -I h 0 -I 0 , I')
-y - y- -v -

IS .17 I
, /, -3 0 1 -)Z 0 8-v -

II, .18 I
, /., -3 -I () )Z -I () 8
-y -

17 .1'1 1 1 h -3 0 I 0 -)2 I ,
"-" - -v' -

I~ .~O I ZJZ -3 -I 0 )2 0 -I ' ,-y -

III 45 4 h -3/Z • -Z 3)i 2jZ -3 -2v -
20 46 4 -)i -3jZ · Z ji 0 -I ()

21 .17 .1 -)i -3jZ · 3 I -)Z 0 1 Z)Z

" .1~ .1 -Ji -3)Z · 2 0 ;:; -I 0 .., /1
" - -y -

2.1 .19 .1 - h -3j2 • 3 I 0 -)2 I Iv-
2.1 40 .1 -J2 -3j2 · Z 0 ji 0 -I 1

25 56 Z ,,/Z -JZ -Z ji 0 -I 0 1

26 57 zj2 0 -3 I -j2 0 I z)i

Z7 58 2 ,,/2 -fi -2 0 fi -I 0 ' f-)_",I _

Z8 59 zfi 0 -3 I 0 -j2 I

29 50 Z fi -fi -2 • 0 fi 0 -I

67 Unstable

6K Unstable

69 Unstable

60 Unstable

7K Unstable

79 Unstable

70 Unstable

KI) Unst;lble

80 Unstable

90 Unstable
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We have chosen here to express the forces directly in terms of the cross-sectional areas
of the elements. i.e. we are writing explicit expressions in terms of A,s rather than s,s. A
typical 1tlm represents the product of all the cross-sections of the bars except bars I and m.
For example. 7[25 stands for the product AtAJA4A6A7AgA9Ao (note. A: and As are
missing). To determine the Bt coefficients one writes two compatibility equations. such as

el-j2el-j2eJ+e4+eS =0

eS+e6-j2e7-j2eg+e9+eIO = O.

(33a)

(33b)

The element elongations are obtained by dividing each force by its stiffness. The
numerators of the elongations in bars I and 2. for instance. are

e, = 3Bzs1tI2S+3Bz61tIZ6+3Bn1tI27+3B281t128 + +2Bso1t lso

el = 6B\S1t12s+6BI61ttZ6+6BI11tI27 +6B1S 1t 128 + +2Bso1t lso. (34)

where 1tlm" represents the product of all the cross-sections of the structure except bars I. m
and n. Introducing the bar elongations into eqns (33) and grouping by the 1tlm" products.
yields two equations from which the Bt coefficients will be determined. The first com­
patibility equation (33a) for instance becomes

(35)

Since this relation must be satisfied for any values of the 1tlm" products we obtain conditions
of the form

B25 -2j2B1s = 0

BZ6 -2j2BI6 = O. (36)

This leads to an overdetermined but consistent set of homogeneous linear equations in the
29 Bt coellicients. out of which only 28 equations are independent equations. For instance.
setting B IS = lone obtains the other 28 coefficients by simple back-substitution. The result
is given in the last column of Table 2.

6. CONCLUSIONS

This paper has presented the analytic expression of the internal forces in a linear elastic
truss. subjected to static loads, as an explicit function of the stiffnesses of the bars. The
three basic ingredients of structural analysis, that is, equilibrium, constitutive law and
compatibility of deformations appear in the equations in a highly structured manner.
Instead of assembling the stiffness matrix. as is done in the matrix displacement method.
and solving the equilibrium equations, we now have a technique to assemble directly the
solution. The explicit analysis equations were developed for trusses. However, Fuchs (1991)
has shown that the analysis of any framed structure, including bending elements, can be
cast in the form of a truss [eqns (I)J by the uncoupling of the bending deformation into a
pure moment mode and a "pure" shear mode. This leads to a diagonal stiffness matrix S
which is what characterizes the truss. Consequently, the present method can be extended
to include structures composed of flexural elements.

This brings us to the issue of implementation. The proposed method is based on
scanning the statics matrix Q in order to determine the set of statically determinate stable
substructures and solving for the intemalloads in every substructure. For this purpose we
have at our disposal well established numerical techniques which are used in the revised
simplex method of linear programming (Strang, 1986). To determine the compatibility
constants Bt one needs to write the set of relations in the Bts, which leads to the solution
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of a system of linear equations whose rank is now known. The algorithms for applying the
method should pose no problem. The only questionable aspect is the number of terms
involved in the explicit expression. In many cases they will render the explicit solution
intractable.

The main contribution of this paper is the presentation of the analytic solution of the
structural analysis equations. For small size structures it constitutes an efficient solution for
structural reanalysis. For large engineering structures one must still consider approximate
analysis models. However. a perusal of the analytic expressions, may help in deriving
improved approximations which will be based on structural considerations. in contrast to
the prevailing approach. which is mathematical in essence.

REFERE:-JCES

Abu Kassim. A. ~1. and Topping. B. H. V. (l9Ss). Static Reanalysis of Structures: A Review. in Civil·Comp.
/'ro{', Sr('. 1111. Con( Or. and SIr. £n.'/. Comp.. London (Edited by B. H. V. Topping). 2. Civil-Comp Press.
Edmburl!h GB, JJ7-·1-l6.

Arora. J. S~ (1976). Survey of structural reanalysis techniques. 1. SIr. Dil'. ASC£ 102. 71(\-l\O~.
Asplund. S. O. (1966). SlrllClural M,'(!t'llIics: Cla.uical a/l(! .\falrh: Mt'lflruh Prentice-Hall. Englewood Cfill's,

NJ.
Ayres. F. (l%21. TIII:or.. (lnd ProMems 0/ Malricr.'. Schaum's OulllllC Srrin. McGraw-Hili. New York.
Fuchs. M. B. (1981). E:\plicit 'lptimum design. Inl. J. Solid,' Siruclllrn lR(I). 13-22.
Fuchs. M. B. (1991). Unimodal l'>cam elements. If/I. J. Solid, Slructure< 27(5). 533-545.
KIrsch. U. (19SI). Optimum StnH:tural Design. i'vfl:Graw-llill. New York.
Strang. G. (I9S6). brlrodlll'lion 10 Al'p!ird ;\(allwm"lin·. Wellesky-Camhrid!;e. Massachusetts.

AI'I'FNDlX: Till' /1" COEFFICIENTS DEPENDENT ONl.Y 0:-'; TilE GEOMETRY OF TilE
STRUCTURE

III Sectioll -l of this paper. the method for ohtaining the hncar equations in the II" compatihility coellkients
was perlilrtm:d analyllcally ti,r the three-har truss prohlcnt. III the case of the three-har truss the e:\lcrnalloadillg
(/'1'/") vanished from the compatihility "Iuations no). We will ,IHlw here that this is a gcneral result.

Consider a compatihihty conditioll resulting fwm the product 1("". in the len-har truss (s,-...: eqn 35). The
COlnpa!lhility coeHkients appearing in that condition originate from the terms in Him. H,•• and 8 ,• in the e:\pressiol1
of thc oar dungaliulls ,'n. "I ami <'", respcctivdy. Conscqucntly the compatihility c<lndition takcs the form

(/\ I)

where the aim arc constants depending on geometry only. 'lfiU I • ./m is typically the force in bar t/ for the subset 1m.
The forces in the ahove equation arc related to the externalloilding through

/",,,, ::~ h,~:!mf1

{/"m = h/'..mf'

(A2)

where h, is typicallv the vect<lf of the elements of row 1 in the inverse of the statics matri:\ Q",. of subset (tnt/).
Note. th~·nmatriees Q;.. and QI. arc obtained from matri:\ Q_ by removing cotumn ! and rcphlcing it by columns
11 and 11/ rcspectively (the column indices refer to their position in the statics matri:\ Q). Using the product form
of the inverse (Strang. 19\\5) one can show that

(A3)

where the scalars fin and fin. ;ITe the Ith entry ,11' the vector f in the system of equ:llions (A,h) and (1\4h)
respectively:

Q••• I' '" 'I.

Q",nl' '" <f.n·

(A4a)

(1\4h)

Sll1ce the three II vect<lfS in eqn (A~) are parallel vectors their scalar products with p will cancel out from the
homogeneous cqu:ltions (A I). Consequently. the H" coefficients :Ire independent from the e:\tern:lllo:lding. They
relkct only the conditions for compatible deformations for any comhination of stitfnesses of the bars of the
structure.


